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Abstract— This paper presents the results of a series of
machine learning experiments that focus on the domain adaption
between different training datasets for autonomous driving.
The experiments use a neural network model obtained through
transfer learning from the Waymo Open Dataset and then tested
with our custom dataset, which was recorded at the TalTech
campus in different weather conditions. In this work, we
developed a set of tools to extract and process the sensory data
from the iseAuto shuttle. The camera and LiDAR sensors of the
iseAuto shuttle were calibrated, and the point clouds data of the
LiDAR sensor was projected onto the camera plane. We present,
here, our publicly available iseAuto dataset which was used for
a classification task under adverse weather and low illumination
conditions. The iseAuto dataset contains 8000 frames of camera
and LiDAR data for traffic object detection and segmentation.
We provide ground truth annotations of 2400 frames, in which
the object contours were manually labeled out. In addition, we
provided the manual-labeled ground-truth segmentations of cars
and humans in images, which can be used by the community
to test the accuracy of the segmentation of their models. An
additional focus of this paper is to demonstrate that with a
few custom annotated data, using transfer learning and semi-
supervised learning, it is possible to obtain reasonable accuracy
on noisy real-world data. The current performance in vehicle
segmentation ranges from 65% to 85% in intersection over
union (IoU) and between 43% and 60% IoU for pedestrian
segmentation in challenging scenarios such as nighttime and
rainy weather.

Index Terms—object segmentation, camera-LiDAR fusion,
iseAuto Dataset, autonomous driving, semi-supervised learning

I. INTRODUCTION

The popularization of autonomous driving technologies has
generated strict requirements to detect and classify objects
around vehicles in different visibility conditions. Vehicles rely
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on sensors to perceive the environment, the most common
sensors in current commercial vehicles are radars and cam-
eras, which are used in Advanced Driver Assistance Systems
(ADAS) to provide fundamental functions such as collision
warning and lane keeping. However, fully autonomous ve-
hicles need to have the capability to recognize the type
and assign semantic meaning to the objects, which forces
researchers to seek to use other perceptive sensors. In recent
years, Light Detection and Ranging (LiDAR) sensors have
received the most attention in the research and industry of
autonomous driving. Compared with the data acquired from
other sensors (e.g., radars and cameras), the awareness of
the 3D scenes is one of the most important advantages
of LiDAR data. The unique features of LiDAR data, such
as accurate distance measurements and rich 3D geometric,
provide opportunities for autonomous vehicles to perceive
the surrounding environment in three dimensions. However,
LiDAR data is usually sparse and unevenly distributed, and
the sensor itself is limited by the reflectivity level of the target
due to the natural characteristics of all laser-based systems.
To mitigate the problems of the LiDAR sensors, cameras are
mainly used to complement the objects’ texture density and
color information. Therefore, it is necessary to effectively fuse
two different modalities (LiDAR point clouds and camera
images) to fully exploit the advantages of two sensors to
generate more reliable and accurate semantic segmentation.

Deep learning technologies have significantly improved the
camera-LiDAR fusion algorithms’ performance in depth com-
pletion, 2D/3D object detection (bounding box), and semantic
segmentation. The essence of the camera-LiDAR fusion for
depth completion is upsampling sparse and orderless depth
data to dense and ordered data. The current studies in this field
can be classified by the types of camera images (monocular
or stereo) used for guiding depth upsampling.

o Monocular images contain 3D geometric information in
their color and gray pixel values, which can be used as
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a reference for depth upsampling. Moreover, there are
more options fusion strategy for monocular images. The
examples of early fusion (data-level fusion and feature-
level fusion) are [1] [2]. Cheng et al. [1] proposed a
convolution spatial propagation network to extract the
affinity matrix from the RGB-D images to generate a
sharp and dense depth map in real time. In [2], only
sequences of RGB and sparse depth images were required
for training a regression model to learn from sparse
depth input to dense depth prediction. The late fusion
(decision-level fusion) application for monocular images
is [3], which aligned the LiDAR and camera data with
a geometric model and then used Gaussian regression to
complete the depth computation.

o Stereo images have richer ground truth 3D geometry
in their disparity maps. Although the stereo images are
limited by effective distance range and unreliable in high-
occlusion and less-texture scenarios, theoretically, they
are still more complementary than monocular images
with the LiDAR data for depth completion. Recent deep
learning work of stereo-LiDAR fusion is [4], which
proposed a geometry-aware network to exploit sparse
and accurate point clouds for guiding correspondences
of stereo images in a unified 3D volume space.

The taxonomy according to the fusion stages (early and
late) can be used for object detection methods based on the
camera-LiDAR fusion.

o For early fusion methods, one-step fusion work [5]
directly fed the depth map and color image into a
Convolutional Neural Network (CNN) for training to
detect objects. In addition, a two-step feature-level fusion
example [6] first obtained Regions of Interest (ROI) by
clustering the LiDAR point clouds data, then used CNN
to detect objects in the corresponding image areas of the
ROL.

o Compared with the early fusion, the late fusion strategy
carried out the fusion of point clouds and image data
at the last stages of the network [7] [8]. Therefore, late
fusion methods are not sensitive to the sensor interference
that happens at early stages and also work normally when
a sensor fails.

Semantic segmentation has become a popular research topic
in recent years because it gives a per-pixel and per-class clas-
sification, which is the direction of absolute scene understand-
ing. The practical applications of camera-LiDAR fusion-based
semantic segmentation are various, including object tracking
[9], lane detection [10], and traffic sign recognition [11]. The
deep architectures of most semantic segmentation algorithms
for autonomous driving are CNNs, which have surpassed other
approaches, such as Recurrent Neural Networks (RNNs) and
Feed Forward Neural Networks (FFNs), in terms of accuracy
and even efficiency.

In this work, we adopt, but leverage a Fully Convolutional
Neural Network (FCN) originally proposed by the work [12]
to perform 3D semantic segmentation. Exclusively, we use

three submodels for different modalities, namely, camera-only,
LiDAR-only, and fusion. One of the merits of such a strategy is
the best-performed fusion detector is independent of the whole
system, which is relatively easy to be built and implemented
in practical applications.

Another contribution of this work is that we present a
custom dataset recorded by the iseAuto autonomous shuttle
designed and developed in the Autonomous Vehicles lab
in TalTech, Estonia [13]. The vehicle was based on design
toolkit [14], and early design conceptual methodology OPAS
[15]. The latest public datasets, such as Waymo [16] and
nuScenes [17], tended to use cutting-edge sensors and cover
different weather conditions. The sensors used to produce the
iseAuto dataset are Velodyne VLP-32 and FLIR Grasshopper3,
which can provide dense point clouds and high-resolution (4k)
images. The iseAuto dataset was primarily recorded in the Tal-
Tech campus, and covers all-weather scenarios featuring rainy
and dark conditions. The dataset is available for download at
(https://autolab.taltech.ee/data/ ). Moreover, we developed a set
of tools to post-process the raw data directly from the sensors.
The iseAuto shuttle was operated by the Robot Operating
System (ROS); thus, LiDAR and camera were produced in
ROS formats and stored as bag files. Our tools load the bag
files and extract the sensory data to the formats that can be
used for the neural network models. Furthermore, there are
tools to calibrate the LiDAR and camera sensors, which is
critical for all dataset works. With the intrinsic and extrinsic
information from the calibration, it is possible to eliminate the
distortion of the data and, most important, project the point
clouds to the image plane. Finally, it is worth mentioning that
with the help of our tools, human annotators can select the
contours of the objects in images and save the segmented area
with its label. When the illumination is too dark to recognize
the objects in images, point clouds projection can be used as
assistance for labeling. In particular, these tools were designed
for universal usage. All the autonomous vehicles that rely on
ROS to handle the data can use them to produce datasets that
are applicable to machine learning.

The experiments of our FCN focus on supervised and
semi-supervised learning. We use the Waymo Open Dataset
as the reference and baseline for learning procedures. The
evaluation of all models for the iseAuto dataset is based on the
human-annotated frames, which was regarded as the ground
truth in our case, although in most cases, human uncertainty
is unavoidable in manual labeling work. Our model detects
objects as semantic segmentation. Therefore, a per-pixel and
per-class counting intersection of union (IoU) metric [18] was
used to evaluate the model performance. This paper extracts
the essential contents of our early work which was published
at Electronics [19]. Exclusively, this paper focuses on our
private iseAuto dataset, elaborates more details, and illustrates
the dataset from a comprehensive perspective. Please refer to
the work [19] for more details of experiments and evaluation
criteria related to domain adaptation.
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II. ISEAUTO DATASET

Recently, data is believed to be a valuable property. The
rapid development of autonomous driving technologies has
required the datasets recorded by the mainstream sensors
and contain various scenarios. It is generally agreed that
producing a private dataset is a challenging task for every
research group, let alone maintaining the consistency of the
dataset from the perspectives of sensor configuration and
environmental conditions. As a result, public datasets such as
Waymo and nuScenes are the first choice for researchers to test
their systems. In our case, the iseAuto shuttle was supposed
to deploy on the real traffic pilot case, and there are very
few open datasets specifically for the low-speed shuttle bus.
Furthermore, most of the public datasets are synchronized,
denoised, and precisely annotated, which is unsuitable for us to
evaluate the performance of the models in practical situations
and real driving conditions.

The LiDAR and camera data collection of the iseAuto
dataset was conducted by the primary sensors of the iseAuto
shuttle, which are Velodyne VLP-32C and FLIR Grasshop-
per3. Velodyne VLP-32C has 32 channels, and its vertical
Field of View (FoV) is 40°. The maximum range and update
rate of the Velodyne VLP-32C are 200 meters and 20 Hz.
For the FLIR Grasshopper3 camera, the most important spec-
ification is a maximum 4240x2824 resolution, which is the
main reason we chose it as the primary camera, to ensure that
the vision of the small objects is sharp and detailed even in
the long range. However, the frequency of the camera is only
7 Hz when running at the maximum resolution. Therefore,
synchronization was needed when projecting the point clouds
to the images.

In the iseAuto dataset, both LiDAR and camera data were
frame-based and presented as a single file. We differentiate the
dataset by illumination (day and night) and weather (sunny and
rain) conditions as four subsets: day-fair, day-rain, night-fair,
and night-rain. It is important to point out that data allocation
on different weather conditions is unbalanced in some works
[12] [20], in which the objects are better represented in sunny
daytimes than rainy nights. However, it is critical for the
iseAuto shuttle to detect objects in adverse environments with
high confidence, considering the general weather conditions
in Estonia. Therefore, the total number of frames for each
weather subset is the same in the iseAuto dataset to ensure
that the knowledge that can be attained from different weather
conditions is the same. To further test the model’s object detec-
tion capability in poor illumination scenarios, we intentionally
turn down the camera’s exposure; thus, the night subset of
the iseAuto dataset has a relatively lower illumination than
the other datasets. Fig. 1 compares the iseAuto and Waymo
datasets at a similar night scene.

The process of LiDAR data is prospectively projecting the
3D point clouds into the 2D occupancy grids; thus, the LIDAR
data can be used in existing 2D convolution networks. For
the iseAuto dataset, the camera was chosen as the reference
frame to project LiDAR data into X, Y, and Z three planes, as

@

Fig. 1. Comparison of the night scene of iseAuto and Waymo datasets. (a)
is the iseAuto dataset, (b) is the Waymo dataset.

shown in Fig. 2. Mathematically, the first step is to transform
the point clouds data to the camera reference frame by
p¢ = TEpE, where p© = [x,y,z,1] is a point presented in the
camera reference frame, p* = [x,y,7] is the corresponding point
presented in LIDAR frame. The 7% € R** is the transformation
matrix from LiDAR to the camera, which can be obtained by
using our tools to execute extrinsic camera-LiDAR calibration
[21]. There is also a need to consider the camera’s intrinsic
information, which the rectification R and projection matrices
P should be used as [u,v,1] = PRpC, (u € [1,h],v € [1,w])
represents the coordinate of each pixel in a 2D image, & and
w are the height and width of the image.

™~

(b) d)

Fig. 2. The projection of the point cloud onto the camera plane in X, Y,
and Z channels. (a) is RGB image, (b) is X channel, (c) is Y channel, and
(d) is Z channel. The colormap of all three LiDAR projection images is the
same. The color of pixels in each channel is proportionally scaled based on
the numerical coordinate value of the corresponding LiDAR points. The black
region means no LiDAR point falls on this image area.

The annotations of the iseAuto dataset were produced based
on high-resolution images because of their rich details for
the small and far-away objects. We developed a labeling tool
that allows annotators to select the contours of objects in
images and save the segmentation with the corresponding
label. Compared with other public datasets, the most important
characteristic of our annotations is that they are aware of
the object contours and the semantic masks are flood-filled,
which means all mask pixels belong to a unique class. Fig. 3
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shows a comparison between the annotations of the iseAuto
and Waymo datasets. The annotations of the Waymo dataset
are based on LiDAR data; therefore, there are no-label-zones
in annotations because of the sparsity of point clouds. The
pixels with no label meanings must be excluded during the
evaluation of the models; this would reduce the quantity of
the total samples for the experiments, which is not an issue
for the iseAuto dataset thanks to our solid-filled annotations.

(@) (b)

Fig. 3. The comparison of the annotations of the iseAuto and Waymo datasets.
(a) is iseAuto, (b) is Waymo.

III. EXPERIMENTS AND RESULTS

Our experiments explore the benefits of transfer learning
and semi-supervised learning techniques from the perspective
of object segmentation accuracy. Here, we use only the iseAuto
dataset to train the baseline models for comparison. The
external knowledge for transfer learning and semi-supervised
learning is from the Waymo Open Dataset. There are 1200
frames of the iseAuto dataset used for training, which is much
smaller than the Waymo dataset (16188 frames) used for trans-
fer and semi-supervised learning. Both Waymo and iseAuto
dataset splits for training, validation, and testing are 60%,
20%, and 20% of the total number of frames, respectively.
Data normalization, augmentation and early stopping are also
used in all training. This is to test the performance of our
models for domain adaptation, which is an important capability
for modern neural network models because it reduces the
amount of slow manual work on data processing to review
all the samples one by one. In our semi-supervised learning
experiments, the unlabeled dataset was machine-annotated by
best-performed Waymo-to-iseAuto transfer learning models.
Then machine-annotated and human-annotated (ground truth)
iseAuto data were mixed to train the transfer learning models
continuously; also train the iseAuto baseline model from
scratch.

The first column of Table I (iseAuto baseline) and Table II
(Waymo2iseAuto TL) reports the performance of the model
trained on 1200 iseAuto frames with and without transfer
learning (TL) from the Waymo dataset. As expected, in this
case, there is an average performance increase between 2-5
percent using transfer learning even in night and rain condi-
tions. The best model obtained in this stage is the fusion one;
see the first column of Table II (WaymoZ2iseAuto TL) was then
used to produce the machine-made labels for the unlabeled
data. Noted that there is an improvement between the second
column of Table I (SSL - iseAuto baseline) and Table II (SSL -

TABLE I
PIXEL-WISE PERFORMANCE COMPARISON BETWEEN ISEAUTO
SUPERVISED AND SEMI-SUPERVISED BASELINE MODELS. (IN
PERCENTAGE UNIT)

iseAuto baseline SSL-iseAuto baseline
ToU(%) ToU(%)
Vehicle Human | Vehicle Human
camera 75.97 71.31 79.85 67.06
Day-Fair LiDAR 71.19 56.87 73.69 58.05
fusion 80.39 74.56 82.38 68.98
camera 77.71 39.87 80.27 53.61
Day-Rain LiDAR 76.00 42.10 80.58 44.09
fusion 83.2 56.24 83.98 54.28
camera 68.89 54.98 73.14 55.07
Night-Fair | LiDAR 74.25 47.19 75.75 49.59
fusion 76.79 62.48 79.28 56.32
camera 52.17 29.40 60.42 42.06
Night-Rain | LiDAR 59.49 36.76 64.89 41.32
fusion 64.68 46.09 63.97 43.63
TABLE 11

PIXEL-WISE PERFORMANCE COMPARISON BETWEEN THE
TRANSFER LEARNING MODELS WITH AND WITHOUT
SEMI-SUPERVISED LEARNING. (IN PERCENTAGE UNIT)

waymo2iseAuto TL | SSL-waymo2iseAuto TL
ToU(%) ToU(%)

Vehicle Human Vehicle Human

camera 77.10 75.87 80.32 69.25

Day-Fair LiDAR 72.14 55.71 76.10 61.81
fusion 83.27 74.24 82.85 71.09

camera 80.26 48.11 82.49 57.12

Day-Rain LiDAR 77.33 40.27 81.00 44.85
fusion 84.92 57.61 85.04 54.84

camera 66.07 52.38 75.97 55.46

Night-Fair | LiDAR 74.5 45.38 76.01 51.63
fusion 80.43 64.03 79.82 60.21

camera 51.7 41.39 60.79 48.3

Night-Rain | LiDAR 62.51 26.46 64.4 41.15
fusion 67.89 45.68 66.92 48.36

Waymo2iseAuto TL), For example, in the night-rain scenario,
the vehicle class segmentation accuracy increases to 66.92%
from 63.97%, and the human class increases to 48.36% from
43.63%, which proves semi-supervised learning process still
uses the knowledge attained from the Waymo dataset.

Inside Table I, there is a comparison of the iseAuto base-
line model with and without semi-supervised learning. With
the help of semi-supervised learning, there is a noticeable
improvement in vehicle segmentation in difficult scenarios.
For instance, from 80.39% to 82.38% and from 76.79% to
79.28% for fusion modality in day-fair and night-fair scenar-
ios, respectively. It is still a struggle for our model to segment
the human class. This can be explained by too few human
samples being recorded in the iseAuto dataset, especially in
the labeled split. The models are more uncertain towards the
human class in semi-supervised learning after a large amount
of unlabeled data was used in training. Table II provides the
performance of the transfer learning model from Waymo with
and without the support of semi-supervised learning, resulting
in an up to 10% apparent performance increase in RGB and
LiDAR modalities.

In conclusion, of all scenarios, there is a 2 to 5 percent
average increase in vehicle segmentation with the help of
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domain adaptation and semi-supervised learning. Notably, the
average accuracy of vehicle segmentation increase from 76%
(iseAuto baseline) to 79% (SSL-waymoZ2iseAuto TL) in fusion
models for night conditions. However, it is still challenging to
segment the less-represented human class, especially in the
scenarios that there are not enough of them in dataset and
machine-labels are too noisy.

IV. CONCLUSION

This work presents a custom dataset produced by the
real-traffic-deployed shuttle bus. The dataset contains high-
resolution RGB images and point clouds projected in the
camera plane. The wide variety, in weather and illumination
conditions of the iseAuto dataset, provides an opportunity for
other researchers in the autonomous driving field to test their
algorithms’ limits in object detection and segmentation. On
the other hand, we present an FCN model for object seg-
mentation and analyze its performance in knowledge transfer
from the well-known Waymo dataset to our custom dataset.
It proves that domain adaptation is possible, and provides
additional performance accuracy, mainly when used in chal-
lenging conditions with high uncertainty, such as rain and night
conditions. Furthermore, it shows that little annotation and
semi-supervised learning leveraged camera and LiDAR-based
semantic segmentation performances. Future work includes
testing this algorithm in different conditions, such as snow,
and improving its capability for domain adaptation, probably
learning from other datasets and more challenging small
classes.
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