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Abstract
We have recently observed the commercial roll-out of robotaxis
in various countries, including the USA and Germany. They are
deployed within an operational design domain (ODD) on specific
routes and environmental conditions, and are subject to continu-
ous monitoring to regain control in safety-critical traffic situations.
Since ODDs typically cover urban areas, robotaxis must reliably
detect and interact with vulnerable road users (VRUs) such as pedes-
trians, bicyclists, and e-scooter riders. To better handle such varied
traffic situations, end-to-end AI, which directly computes vehicle
control actions from multi-modal sensor data instead of only for
perception, is on the rise. High quality data is needed to system-
atically train and evaluate such systems within their ODD. In this
work, we propose PCICF, a framework to systematically identify
and classify VRU situations to support ODD’s incident analysis.
We base our work on the existing synthetic dataset SMIRK, and
enhance it by extending its single-pedestrian-only design into the
MoreSMIRK dataset, a structured dictionary of multi-pedestrian
crossing situations constructed systematically. We then use space-
filling curves (SFCs) to transform multi-dimensional features of
scenarios into characteristic patterns, which we match with corre-
sponding entries in MoreSMIRK. We evaluate PCICF with the large
real-world dataset PIE, which contains more than 150 manually
annotated pedestrian crossing videos. We show that PCICF can
successfully identify and classify complex pedestrian crossing situ-
ations, even when groups of pedestrians merge or split during their
crossing. By leveraging computationally efficient components like
SFCs, PCICF has also potential to be used onboard of robotaxis for
out-of-distribution (OOD) detection, for example. We share an open-
source replication package for PCICF, including its algorithms, the
complete MoreSMIRK dataset and dictionary, and our experiment
results, available at https://github.com/Claud1234/PCICF.
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1 Introduction
The development of information technology has changed people’s
opinions about vehicles, which are no longer simply mechatronic
systems but software-intensive innovation platforms compared to
their predecessors. Today, a commercial passenger car could contain
more than 100 million lines of code, compared with only 50,000 lines
decades ago [10], depicting the challenge the automotive industry
faces in maintaining system quality. Meanwhile, the implementa-
tion of AI and ML in the automotive industry has been extensively
studied in recent years, which has led to two challenges for modern
vehicles: First, the need for large computational power, and second,
the rapid increase in onboard data to feed AI/ML software.

1.1 Problem Domain & Motivation
Traffic event identification and classification from such growing
data is an important research direction in autonomous driving (AD)
and traffic safety. Investigating the most safety-related mishaps
highlights the importance of detecting and predicting pedestrian
behavior, as they are among the VRUs. For instance, a pedestrian
was severely injured in a recent mishap involving a robotaxi, which
led to the revocation of its AD deployment and testing permit [21].
Avoiding collisions with pedestrians typically requires the highest
Automotive Safety Integrity Level (ASIL) due to the high severity
of potential accidents [20]. The implementation of these systems
becomes even more challenging because pedestrian behavior and
appearance are less predictable compared with those of other road
users. For example, the vehicle may encounter pedestrians even
on roads such as highways, where they are not permitted. Hence,
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the development, verification, and validation of such systems re-
quire special attention. For instance, the decomposition of safety
requirements with a high ASIL (i.e., ASIL D) is prescribed by the
standard, which then requires diversity in the implementations of
two parallel software components performing the same task. More-
over, recent research is exploring how AI/ML-based software can
directly calculate vehicle control parameters from multi-modal sen-
sor data. However, this trend is posing important challenges to be
addressed: On the one hand, the development of AI/ML algorithms
relies on growingly complex neural network (NN) architectures,
and on the other hand, the development and systematic assessment
of such AI/ML-based software has become dramatically dependent
on large-scale datasets, which need to cover sufficiently diverse
traffic situations to be effective. We focus on two research direc-
tions in this work: a) the identification and detailed classification
of VRUs when they interact with vehicles, and b) the qualification
of datasets for AL/ML-based software to assess their potential to
be used for specific safety-related traffic events. Our motivation is
to propose and evaluate an alternative to typical NN models that
rely on complex architectures and vast computational resources to
extract traffic events from large-scale non-annotated datasets.

1.2 Research Goal & Research Questions
Safely detecting and classifying pedestrian crossing situations in
video data is critical for the robustness of perception stacks in
autonomous vehicles (AVs). However, pedestrian crossing identifi-
cation and classification are more than simple yes/no warnings, but
also provide information about scene details such as the number of
pedestrians, crossing directions, and pedestrian behaviors [25].

We pursue the research goal in this work to conceptualize and
prototype a framework that processes camera images directly to pro-
vide a detailed description of the pedestrian crossing event. We first
construct MoreSMIRK, a systematic dictionary of synthetic pedes-
trian crossing events. For identifying and classifying real world
traffic situations, we use the broadly adopted YOLO network for
preliminary object detection, and then leverage on SFC to compute
a domain-specific representation of filtered pedestrian crossing
tracks; this representation can be thought of as a ‘fingerprint’ of a
specific crossing event having the shape of a bar code (cf. Fig. 3(b)).
These fingerprints enable us to compare the similarity to find cor-
responding ones in our dictionary MoreSMIRK to conclude the
semantic classification of pedestrian crossing events. We structure
our research along the following three research questions that build
on top of each other:

RQ-1:What are the design decisions to create a synthetic dataset
for event classification?

RQ-2:What are the design decisions for a traffic event identifi-
cation and classification framework?

RQ-3:What is the performance of the proposed framework?

1.3 Contributions & Scope
We present a framework for multi-pedestrian crossing identification
and classification. We summarize our contributions as follows:

• We introduce a framework consisting of pedestrian extraction,
dimensionality reduction, and crossing analysis, which incor-
porate NNs, SFCs, and a systematically constructed crossing
event dictionary as essential algorithms, respectively.
• We extend the public synthetic dataset SMIRK, which focuses
on single-pedestrian cases only, to multi-pedestrian scenar-
ios and systematically construct the MoreSMIRK dataset as a
benchmark to retrieve crossing events from real-world datasets.
• We demonstrate and evaluate the capability and prospect of our
framework in identifying and classifying pedestrian crossings
in real-world scenarios. Moreover, we demonstrate the frame-
work’s potential to efficiently validate and annotate large-scale
datasets for AI/ML-based software.

Our system delivers two primary advantages: a) Our novel combi-
nation of deep learning (DL) and SFCs for event identification offers
computational and storage efficiency while maintaining domain-
specific information, which allows us to deploy the framework in
practical applications and consider even large-scale AD data for
other traffic events; b) the MoreSMIRK dataset has the flexibility to
define even complex pedestrian crossing scenarios and hence, the
benchmark dictionary, which is based on the MoreSMIRK dataset,
is versatile and applicable for other traffic event detections.

The remainder of the paper is structured as follows. Section
2 reviews the pedestrian safety-related regulations, datasets, and
detection approaches. Section 3 presents the design and detailed
architecture of PCICF. Specifically, we provide the construction
principles of the MoreSMIRK dataset, which is one of our work’s
essential contributions. Section 4 presents the methodology used to
evaluate PCICF. Section 5 reports on the results from the evaluation
experiments and provides a discussion. Finally, a conclusion with
outlook for future work is provided in Section 7.

2 Related Work
This section covers the state of the art of pedestrian identification
and crossing classification: subsection 2.1 describes safety-related
regulations, subsection 2.2 moves on to discuss existing image
datasets that can be used to train AD and Advanced Driver As-
sistance Systems (ADAS) functions, and subsection 2.3 presents
strategies to deal with large scale datasets to ensure computational
efficiency in edge devices such as public road vehicles.

2.1 Pedestrian Safety, a Requirement for AD
All safety-related software systems in AVs shall avoid causing un-
reasonable risks to other road users, including VRUs, especially
pedestrians [21]. Hence, different types of VRUs, such as pedestri-
ans, cyclists, or e-scooter riders, shall be considered when designing,
developing, and testing perception systems in both AD and ADAS.
Rigorous software safety assurance processes are prescribed by
standards and regulations. For instance, ISO 21448 (Safety of the In-
tended Functionality), also known as SOTIF, provides requirements
and recommendations for the design, verification, and validation of
safety-related systems [15]. SOTIF emphasizes the importance of
unknown hazardous scenarios and the need to identify and mitigate
them. This is particularly challenging for pedestrians, as specifying
all combinations is impossible. For example, as described in the
SOTIF, an unknown hazardous scenario might involve a person on
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Figure 1: Overall workflow of PCICF: The raw camera input is a sequence from the PIE dataset, and the dashed rectangles
represent the modules detailed in Section 3. Dark-green boxes at the top indicate the datasets and algorithms used in each
module. Finally, four similarity checks in crossing event analysis out of the 104 entries from MoreSMIRK are shown to obtain
semantic descriptions for a crossing event.

a skateboard being ignored by detection algorithms because their
speed exceeds the typical pedestrian walking speeds observed in the
training data [15]. More detailed considerations, such as diversity
and sufficiency (i.e., size, age, pose) in training and testing datasets,
are mentioned in ISO 8800 (Safety and Artificial Intelligence) [16].
Complementary guidelines are provided by the European Commis-
sion’s High-Level Expert Group on Artificial Intelligence: Since AVs
interact with humans, a number of high-level requirements, not
only during operation (i.e., transparency), but also on the data for
training of the underlying AI/ML (i.e., diverse) need to be consid-
ered during development and for deployment [12].

2.2 Pedestrian Image Datasets for AD training
To train AI models for pedestrian identification and crossing classi-
fication, researchers often turn to already existing datasets, some of
which are openly available. Depending on the nature of the model
and the task, different types of data are used. For instance, the
Zenseact Open Dataset (ZOD) offers video frames from a high-
resolution RGB front-looking camera, together with data from
a LiDAR sensor [2], and covers a number of geographical areas.
The large real-world dataset PIE, captured by York University in
Canada, also containsmore than 150manually annotated pedestrian
crossing videos. Another well-known example is the Waymo Open
Dataset, which contains recordings from five cameras in different
directions side-by-side to other sensor readings and segmentation
information, which is useful for scene understanding [19].

While the usefulness of these datasets has been largely demon-
strated, and they often include annotations such as bounding-boxes
for other traffic agents, they do not reflect well the importance of
focusing on vulnerable road users, such as pedestrians. On the other
hand, STCrowd is a large-scale multi-modal dataset that focuses on
3D pedestrian perception in challenging crowded scenarios [11].

Synthetic data can also be used to train safety-critical AI mod-
els. Frameworks for pedestrian simulation exist [24], even though
not all focus on visual realism, which might hinder their use in
verification processes [9]. Some synthetic datasets focused on AD-
related scenarios: For instance, SMIRK is an automatic emergency
braking (AEB) system to protect pedestrians developed following
the process defined in SOTIF [15, 24] and has been used to con-
duct a systematic safety analysis of an AEB system using the AM-
LAS methodology [6]; in addition, SMIRK is also the underlying
synthetic dataset focusing on single pedestrian situation used to
evaluate the AEB. Data used to train the SMIRK system is pub-
licly available [24]; our work will build on it and augment it with
common pedestrian motion patterns as described in Sec. 3.

2.3 Real-Time Image Analysis in Edge Devices
As more edge cases and malfunctions in the real world are discov-
ered, datasets for training and evaluating AVs continue to grow.
Moreover, real-time analysis of onboard sensor data (i.e., camera
feeds) is needed to enable live monitoring of surroundings of AVs
and ensure compliance with pedestrian safety rules and regula-
tions. The large sets of data as well as the need to process them
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in real-time, poses challenges for the software architecture and on
computationally efficient processing.

Properly addressing these challenges onboard of vehicles is grow-
ingly important, where computational resources for AI systems
are constrained, and connectivity might not be reliable. We pro-
pose SFC [3] to obtain characteristic patterns in pedestrian cross-
ings. SFCs are mappings from high-dimensional spaces to a single-
dimensional space that have practical applications in fields such as
database indexing due to their ability to preserve spatial relation-
ships between data points [3]. Given the computational efficiency
of SFCs, they have the potential even to be used onboard of vehicles,
as demonstrated by Berger et al. in 2023 [3, 4].

3 PCICF: A Pedestrian Crossing Identification
and Classification Framework

We propose PCICF, as shown in Fig. 1, as an end-to-end framework
for identifying and classifying pedestrian crossing events. Such
events can be characterized as (a) spanning over a certain amount
of time (i.e., consecutive input frames in our case), and (b) the cross-
ing event itself needs to fulfill the semantic properties as starting
either on the left or right hand side of the road, and ending on the
opposite side, (i.e., crossing the field of view during the selected
frame sequence). In PCICF, camera images are fed as input to ex-
tract individual pedestrian tracks (labeled as ‘PIE Dataset’ in Fig. 1,
cf. Section 4 for evaluation details), which are transformed to event-
specific fingerprints that intuitively take the form of barcodes with
the help of SFCs (in Fig. 1). We match these barcodes with those
from our systematically constructed dictionary, MoreSMIRK, to
obtain detailed explanations of the particular pedestrian crossing
events (labeled as ‘MoreSMIRK’ in Fig. 1 ). In the following, we
describe the relevant modules of PCICF in detail.

3.1 Constructing the MoreSMIRK Dataset
We use a look-up dictionary of known patterns for pedestrian cross-
ing events. This dictionary forms the core of PCICF when analyzing
a dataset of interest to obtain semantically plausible explanations
for potential pedestrian crossing events. We based the systematic
construction of MoreSMIRK on the original SMIRK dataset [24],
which contains 4,928 varying single pedestrian crossing config-
urations, along with their respective semantic segmentation and
corresponding labels. The SMIRK dataset was created using the ESI
Pro SiVIC simulator to support the systematic analysis of an auto-
motive safety function that initiates automatic emergency braking
(AEB) for a vehicle in the event of an unexpected situation where a
pedestrian is crossing the road in front of a vehicle [6]. The dataset
contains various synthetic pedestrians, including both male and
female individuals in different visual appearances (business and
casual), as well as a child.

However, the current SMIRK dataset is not sufficiently represen-
tative of what a vehicle could potentially face when approaching an
inner-city intersection with traffic lights or crosswalks, as it only
covers single pedestrian crossing events. Thus, we extend SMIRK
into MoreSMIRK to improve the representativeness of pedestrian
crossing situations, which are potentially present in real-world sce-
narios. Our extensions systematically add more complex pedestrian
crossing configurations that were constructed according to two

properties: a) initial location, and b) pedestrian grouping config-
uration, as shown in Fig. 2. The initial location indicates where
pedestrians start to cross, either from left to right or from right to
left. We include systematically varying pedestrian configurations of
up to three individuals, clearly separated and following each other
when crossing a road. We choose this generating pattern because
three people following each other with some spacing in between
would almost occupy half of the street to cross, and when two
groups with the same configuration would cross from both sides,
the entire area in front of the ego vehicle is nearly fully covered. All
crossing events were generated as image sequences of 100 frames,
with the first pedestrian entering the scene in frame 1 and the last
pedestrian leaving in frame 100.

_ _ X

X X X

X _ X

_ X X

Y _ _

Y Y Y

Y _ Y

Y Y _5210 43

Figure 2: The illustration of configuration principles to gen-
erate the MoreSMIRK dataset. The red boxes indicate the
locations of regions of interest (RoI) in the dataset.

As illustrated in Fig. 2, 𝑋 is the pedestrian crossing from left to
right, and 𝑌 represents the one crossing from right to left. Based
on the four pedestrian group configurations, there are eight basic
crossing patterns for single-directional pedestrian crossings (four
from each side). For two-directional crossings, there are 4 ∗ 4 =

16 unique crossing patterns when pedestrians from two sides are
moving synchronously. We include an additional and optional offset
Φ from 0 to 5, corresponding to the number of six regions of interest
(RoI) in front of the ego vehicle (cf. red rectangle boxes in Fig. 2),
to delay the start of the crossings for the pedestrians 𝑋 from the
left side. For instance, offset Φ = 1 means that when pedestrian 𝑋

on the left reaches the RoI grid 0, the right pedestrian 𝑌 is already
located at RoI grid 4, i.e., has entered the street. We result in 16 ∗
6 = 96 crossing patterns when following this principle; in total,
we provide 8 + 96 = 104 crossing patterns in the MoreSMIRK
dataset, including the pedestrian configurations without facing
pedestrians starting on the other side, respectively. Please note
that mirroring the 96 two-directional sequences s is equivalent to
applying the offset Φ to the pedestrian 𝑌 on the right side. We also
complement the generated scenarios with semantic ground truth
annotations for all sequences in MoreSMIRK. Table 1 shows a part
of pedestrian crossing configurations. The complete MoreSMIRK
dataset is publicly available via AI Sweden1.

3.2 Crossing Information Extraction
PCICF consists of three individual parts: (a) preliminary pedes-
trian detection, (b) intermediate detection result processing, and (c)
1https://www.ai.se/en/ai-labs/technology-infrastructure/datasets/smirk-and-
moresmirk-datasets#moresmirk

https://www.ai.se/en/ai-labs/technology-infrastructure/datasets/smirk-and-moresmirk-datasets#moresmirk
https://www.ai.se/en/ai-labs/technology-infrastructure/datasets/smirk-and-moresmirk-datasets#moresmirk
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Table 1: Part of pedestrian crossing event configurations in
the MoreSMIRK Dataset. The X and Y represent the pedestri-
ans crossing from left to right and right to left, respectively.

Events
(E)

Left Pedestrians
(L)

Offset
(Φ)

Right Pedestrians
(R)

0 _ _ X N/A _ _ _
1 _ X X N/A _ _ _
2 X _ X N/A _ _ _
3 X X X N/A _ _ _
... ... ... ...
8 _ _ X 0 Y _ _
9 _ X X 0 Y _ _
10 X _ X 0 Y _ _
11 X X X 0 Y _ _
... ... ... ...
100 _ _ X 5 Y Y Y
101 _ X X 5 Y Y Y
102 X _ X 5 Y Y Y
103 X X X 5 Y Y Y

crossing event identification and classification. We use YOLO for
preliminary pedestrian detection [17] and then apply tracking and
filtering to obtain relevant detections as potential candidates for
pedestrian crossing sequences. Next, we transform these sequences
into their corresponding single-dimensional representations by
leveraging an SFC [3] to obtain their characteristic fingerprints. An
SFC is a curve exhibiting a repetitive pattern, which passes through
every point in a multi-dimensional data space to transform it into
its corresponding single-dimensional representation while, depend-
ing on the choice of the recursive pattern, preserving the original
data-space’s properties, such as locality between two points. When
observing such single-dimensional representations over time, we
obtain characteristic stripe patterns as shown in Fig. 3 that we
can match to corresponding entries within our look-up dictionary
MoreSMIRK to query for matching pedestrian crossings.

For the first part, preliminary pedestrian detection, we use YOLO
detections in the form of bounding-boxes to filter pedestrian be-
havior of interest. YOLO is one of the most popular choices for
general-purpose object detection applications because it has been
optimized to balance speed and accuracy. However, one current
shortcoming of YOLO is its relatively weak performance at separat-
ing groups of objects or densely-packed objects.

Next, for intermediate detection result processing, we extract
pedestrian crossings from YOLO’s detections by selecting, track-
ing, and filtering bounding-boxes in order to identify pedestrians’
bounding-boxes within a valid crossing sequence, which spans from
one side to the other side of the road. The valid crossing sequences
are marked as a RoI grid, shown as the red boxes in Fig. 2, serving as
a reference for bounding-box tracking and filtering. The definition
of the RoI grid is based on domain-knowledge as the most relevant
pedestrian crossing events are likely to occur in this region [8]. We
exclude the image’s edges from the RoI grid to reduce the influence
of factors such as image distortion and vehicle motion (i.e., pitching
and rolling) on pedestrian detection.

We utilize the BoT-SORT [1, 5] algorithm to track pedestrians,
which combines a baseline model (SBS-S50) [18] from the open-
source object identification library [14] with a Kalman Filter to
achieve two-tier bounding-box tracking. Moreover, BoT-SORT pro-
poses a camera motion compensation module to address the lack of
sensor-related information, which is well-suited for our objective
to process raw camera data directly. We choose the sparse optical
flow [7] as the backbone for feature tracking and then estimate the
background motion transformation from one frame to the next.

We filter potential pedestrian crossing events by selecting pedes-
trian crossing sequences that span continuously from one side of
the road to the other. We apply the following two filtering criteria
to the tracking results: (a) minimum and maximum 𝑥 coordinates
of the pedestrian bounding-box’s central point must fall in the left
and right pre-defined RoI clusters (red boxes in Fig. 2), and (b) the
horizontal displacement of a pedestrian bounding-box has to be
bigger than the specific threshold (half of the whole RoI region in
our experiments) that we determined heuristically. We illustrate the
process of pedestrian crossing information extraction as described
above in Algorithm 1. Specifically, 𝐷 represents the pedestrian’s
bounding-box information, such as the (𝑥,𝑦) coordinates, width,
and height. The BoT-SORT configuration 𝑐𝑜𝑛𝑓 contains the param-
eters for the first- and second-tier matching thresholds, the new
tracking initiation threshold, and the tracking buffer frames.

Algorithm 1: Pedestrian Crossing Information Extraction.

Input: A full input image sequence 𝑆 ; BoT-SORT configuration
𝑐𝑜𝑛𝑓 ; bounding-box coordinates of pre-defined RoI regions 𝑅𝑛 ;
valid-pedestrian-crossing threshold 𝜏 .

Output: The bounding-boxes of valid crossing event 𝐸.
/* The detection and tracking of bounding-boxes */

1: for frame 𝑓𝑛 in 𝑆 do
2: 𝐷𝑛 ← 𝑌𝑂𝐿𝑂 (𝑓𝑛)
3: 𝑢𝑛𝑖𝑞𝑢𝑒𝐼𝐷 ← 𝐵𝑜𝑇 -𝑆𝑂𝑅𝑇 (𝐷𝑛, 𝑐𝑜𝑛𝑓 )
4: end for
5: 𝐷𝑡𝑟𝑎𝑐𝑘 ← 𝑎𝑝𝑝𝑒𝑛𝑑 (𝑎𝑟𝑔𝑤ℎ𝑒𝑟𝑒 (𝐷𝑛, 𝑢𝑛𝑖𝑞𝑢𝑒𝐼𝐷))
/* The filtering of bounding-boxes */

6: if 𝑚𝑖𝑛(𝑥 ∈ 𝐷𝑡𝑟𝑎𝑐𝑘 ) < 𝑅𝑛/2 <𝑚𝑎𝑥 (𝑥 ∈ 𝐷𝑡𝑟𝑎𝑐𝑘 ) then
7: 𝐷1𝑠𝑡−𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 ← 𝐷𝑡𝑟𝑎𝑐𝑘

8: end if
9: for 𝑑 in 𝐷1𝑠𝑡−𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 do
10: if (𝑚𝑎𝑥 (𝑥 ∈ 𝑑) -𝑚𝑖𝑛(𝑥 ∈ 𝑑)) > 𝜏 then
11: 𝐷2𝑛𝑑−𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 ← 𝑑

12: end if
13: end for
14: 𝐸 ← 𝐷2𝑛𝑑−𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛

3.3 Crossing Dimensionality Reduction
The previous processing step in PCICF provides us with seman-
tically plausible candidates for the crossing event. However, the
fact that pedestrians may merge or split into groups when crossing
is a challenge for the classification. We need to further process
such candidates to meet our research goal of not only knowing that
we face a pedestrian crossing but also obtaining further descrip-
tive information, such as type of pedestrian crossing. Hence, we
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(a) (b)

Figure 3: Data dimensionality reduction made with our AutoSFC tool2 (same PIE dataset sequence as in Fig. 1): (a) shows the
activation of the six RoIs (i.e., red boxes in Fig. 2), and (b) depicts the corresponding single-dimensional representation of the
6D-RoIs over time; the vertical stripes represent the crossing-specific fingerprint to be matched within MoreSMIRK.

need to match results from the previous processing step with the
systematically constructed events in MoreSMIRK.

We leverage the Z-order SFC [3] to obtain fingerprints of cross-
ing events that we use to look up potentially matching candi-
dates in MoreSMIRK. We calculate fingerprints by transforming the
bounding-box information across an entire sequence into a single-
dimensional numerical representation that encodes the pedestrian’s
temporal and spatial occurrences. We first compute the intersection-
over-union (IoU) between the valid crossing pedestrian’s bounding-
box and pre-defined RoI grids (the green and red rectangular boxes
in Fig. 1), and then, we feed the IoU values to the Z-order SFC as
input to calculate the fingerprints. Please note that overlapping
pedestrians’ bounding-boxes are only considered once in the pro-
cess, and we apply the floor-ceiling threshold in this step to further
reduce the SFC’s computational complexity. For the entire input
sequence, the SFC algorithm produces a single-dimensional numer-
ical representation of the activation of each box in the RoI grid, in
terms of temporal and spatial perspectives.

Fig. 3 visualizes the SFC transformation process with our tool
AutoSFC2: Fig. 3(a) plots the original, multi-dimensional data from
the previous pedestrian crossing extraction step in PCICF, and
Fig. 3(b) depicts the corresponding, single-dimensional represen-
tation after applying the Z-order SFC over time. The X-axis in
Fig. 3(a) is the time of a given sequence, and the Y-axis is the nor-
malized IoU between the bounding-boxes and RoI grids. The six
pre-defined RoI grids are represented by different colors, and their
plots show the activation order of all boxes in the RoI grid for a
given pedestrian crossing sequence. The X and Y axes in 3(b) are the
Morton code and frame ID of the given sequence after dimension-
ality reduction, respectively. The SFC transformation represents
spatio-temporal information of the activation of boxes in the RoI
grid in a single-dimensional representation, which is traceable to
the original signals.

2https://beatrizcabdan.github.io/AutoSFC/

3.4 Crossing Event Analysis
The final module in PCICF is to analyze the resulting fingerprints
to obtain descriptions for the crossing events. By using SFCs to
calculate such fingerprints, the identification and classification of
pedestrian crossing events over time becomes the exploration of
matching fingerprints within MoreSMIRK. The fingerprints de-
scribe spatiotemporal events in a multi-dimensional data-space
as characteristic stripe patterns (CSPs) that emerge on a single-
dimensional spectrum, intuitively referred to as barcodes; we use
these CSPs to identify and classify pedestrian crossing events.

First, we need to transform the 104 pedestrian crossing sequences
from MoreSMIRK via SFC into their corresponding CSPs to obtain
the barcodes for the different crossing events contained in our
dictionary. Please note that this step needs to be repeated only when
the content of MoreSMIRK changes to retrieve the updated CSPs,
and otherwise, it is a one-time generation step. We conduct this
transformation by feeding MoreSMIRK into PCICF; the synthetic
pedestrian and fixed-view background in the MoreSMIRK dataset
reduces false detections in our crossing information extraction step.
Furthermore, the steady kinetic characteristics of the MoreSMIRK
dataset’s pedestrians, such as speed and start/stop positions, ensure
that the dimensionality reduction module can accurately determine
the CSPs of each crossing event.

When analyzing the crossing event in a sequence, the final step
in PCICF is to look up potentially matching spatiotemporal CSPs
within MoreSMIRK. The similarity between the testing sequence’s
CSP and the one from MoreSMIRK reflects the tendency of a cross-
ing sequence towards the one contained in our systematically con-
structed dictionary. In real-traffic scenarios, a pedestrian crossing
sequence often exhibits multiple characteristics simultaneously.
For instance, a group of occluded pedestrians starts crossing with
different walking speeds, and hence, they split into several clusters
during or at the end of the crossing. For such crossing sequences,

https://beatrizcabdan.github.io/AutoSFC/


PCICF: A Pedestrian Crossing
Identification and Classification Framework ICSE-SEIP ’26, April 12–18, 2026, Rio de Janeiro, Brazil

the number of pedestrians is dynamic from the ego vehicle’s per-
spective. A novel contribution from PCICF is that, by systemati-
cally constructing varying pedestrian crossing configurations in
MoreSMIRK and using fingerprints from SFC-transformed, multi-
dimensional data, we can even identify and classify such ambiguous
real-world pedestrian crossing sequences, as we report in our ex-
periments (cf. Sec. 5). The output from the crossing event analysis
step provides similarities of the testing sequence with all crossing
events defined in MoreSMIRK. Furthermore, these similarities also
represent the temporal duration of the testing sequence that falls
in each pedestrian crossing classification.

4 Methodology for Evaluating PCICF
After introducing the design rationale behind PCICF, we outline its
evaluation methodology based on the real-world dataset PIE [22].

4.1 The PIE Dataset
While PCICF contains MoreSMIRK as a systematically constructed
dataset with synthetically generated pedestrian crossing events,
we utilize the real-world PIE dataset [22] for evaluation. PIE is
an openly available, large-scale dataset focusing on pedestrians
in urban traffic scenes collected by York University, Canada. The
video in PIE was captured with a wide-angle camera covering the
entire pedestrian crossing area, and the dataset provides continu-
ous, pedestrian-dense sequences as MP4 videos. The PIE dataset
claimed to have addressed issues in other popular pedestrian-related
datasets, such as KITTI [13] and JAAD [23], regarding the number
of samples and short discontinuous chunks.

However, as the original purpose of the PIE dataset is to support
pedestrian intention analysis, we reorganized and re-labeled it to
make it applicable to classify pedestrian crossing events. We manu-
ally labeled the ground truth for pedestrian crossing events based
on a similar principle that is used for constructing the MoreSMIRK
dataset, i.e., start/end location of pedestrians, crossing direction,
and group formation, if relevant; thereby, applying an objective
labeling principle.

We provide a total of 21,327 camera frames spanning 158 se-
quences, classified into seven sub-categories based on the number
of pedestrians and their crossing directions. Moreover, for complex
pedestrian crossing sequences involving multiple pedestrians and
directions, we provide detailed textual descriptions to indicate crit-
ical information, such as ‘four pedestrians in three clusters’ and
‘two pedestrians with gap from left to right, one pedestrian from
right to left’. Table 2 presents an excerpt of the detailed properties
of the PIE dataset that we used for the evaluation of PCICF.

4.2 Experimental Setup for Evaluating PCICF
We conduct all experiments on a portable computer powered by an
Intel(R) Core(TM) i5-9400 6-core CPU and an NVIDIA GTX 1660
Ti GPU. The parameter configurations of PCICF are crucial for
achieving efficient and accurate classification. Please note that the
framework’s domain-specific parameters, such as RoI location, can
be adjusted based on the application context. In our experiments,
the input image size is 640 × 480, and each RoI box is 120 × 60.

Table 2: The properties of part of the PIE dataset used in
this work (Ped, L, and R indicate pedestrian, left, and right,
respectively).

Subset Number of
frames

Number of
sequences

Single Ped L to R 6649 55
Single Ped R to L 6769 56
Multiple follow-up Peds L to R 1211 9
Multiple follow-up Peds R to L 1404 11
Multiple no-follow-up Peds L to R 1859 10
Multiple no-follow-up Peds R to L 1520 9
Multiple Peds both directions 1915 8

The thresholds for the two-tier bounding-box tracking in the BoT-
SORT algorithm are 0.25 and 0.1, respectively. For the bounding-
box filtering module, the valid-pedestrian-crossing threshold 𝜏 ,
representing the displacement of the pixels to be regarded as a valid
crossing, is 180. We share all parameters from the experimental
setup in our open-source GitHub repository.

The metrics used to indicate classification results are the similar-
ities of the Morton codes for a sequence from the PIE dataset and
the corresponding sequences from the MoreSMIRK-based dictio-
nary. The numerical values and sequential order of Morton codes
represent spatial and temporal information, which are two critical
characteristics when computing the similarity percentages. We feed
all 158 sequences from PIE into PCICF and report on the similarity
between the manual annotations and the results after matching the
fingerprints from PIE with those in MoreSMIRK.

4.3 Threats to Validity
Our work consists of two parts: (a) a systematically constructed
dataset containing the dictionary of pedestrian crossing events, and
(b) algorithms and prototypical implementation to process input
frames, extract, and match potential pedestrian crossing sequences
with the aforementioned crossing event dictionary. Potential threats
may originate from these two aspects of PCICF.

The pedestrian crossing event dictionary is produced based on
the MoreSMIRK dataset for precision and minimal interference, but
this may also potentially result in a limited number of pedestrian
event configurations. For instance, the size and moving speed of
synthetic pedestrians in the MoreSMIRK dataset are fixed. How-
ever, the distance between pedestrians and the ego vehicle varies
in the real world, leading to cases where multiple pedestrians are
treated as a single pedestrian (i.e., when they are far away from the
vehicle or within the same RoI grid), and vice versa. Therefore, the
classification for multiple non-following pedestrians can be biased
towards single or follow-up events. The typical examples are se-
quence 161, 342, and 350 in Table 6. The similarity of biased events
is more dominant than the ground truth (90% against 63%, 80%
against 54%, and 90% against 63%, respectively). Furthermore, and
similar to the pedestrian intention aspect of the original PIE dataset,
annotating pedestrian crossing events is a subjective topic to some
extent, especially for complex pedestrian crossing sequences, which
can be interpreted into different event classes. We follow the princi-
ple of the PIE dataset’s original pedestrian intention annotation to
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Figure 4: Misclassifications of single-directional crossing for
single pedestrian: The ground truth for (a) and (b) are ‘_ _ X;
N/A; _ _ _’ and ‘_ _ _; N/A; Y _ _’, respectively.

manually label its sequences with neutral descriptions of pedestrian
crossing events.

For the prototypical implementation, the choice of algorithms
and related parameters may affect the accuracy and efficiency of
classification. For instance, YOLO’s weak performance on some
pedestrian crossings in Tables 3 and 4 contributes to its failure to
classify sequences in which pedestrians are far away from the ego
vehicle. To cope with this limitation, the parameters for pedestrian
tracking and filtering in PCICF would need to be calibrated and
fine-tuned. Moreover, the tracking algorithm is the bottleneck for
the classification of complex multiple-pedestrian both-directional
crossings due to the heavy conclusions and background objects.
These domain-specific nuances pose challenges for generalizability.

5 Results
This section describes the experimental results and analysis of ap-
plying PCICF to identify and classify pedestrian crossing sequences.
We utilize PCICF to analyze a real-world dataset and then compare
the similarity between of those results with the systematically con-
structed pedestrian crossing dictionary, MoreSMIRK. We present
here the basic information on environmental and parameter setup,
along with some insights from the experimental results.

As shown in Table 2, the majority of the PIE dataset consists of
single pedestrian crossings, which is partially due to the real traffic
at locations where the dataset was collected. For the scenarios of
single pedestrian crossing from left to right and from right to left,
corresponding to event 0 and event 4 in the MoreSMIRK dataset,
respectively, our PCICF achieves accuracies of 85% and 80% to
precisely map the PIE dataset sequences to corresponding events
in MoreSMIRK. The primary reason for false classifications is that
pedestrians at a distance are not correctly filtered or detected. Fig. 4
shows two typical false detections for single pedestrian crossing
sequences. Fig. 4 (a) is the single pedestrian crossing from left to
right. The human printed in the billboard on the tram is falsely
detected; thus, PCICF returns the higher similarity for event 8 (‘_
_ X; N/A; Y _ _ ’ in Table 1) at 66% than the ground truth event 0
(‘_ _ X; N/A; _ _ _’) at 54%. Fig. 4 (b) is the sequence that crosses
from right to left. The far-away pedestrian detection results in the
similarity for event 5 (‘_ _ _; N/A; Y Y _’) at 70% against the ground
truth event 4 (‘_ _ _; N/A; Y _ _’), which is at 54%.

Table 3 and Table 4 show PCICF’s classification results for se-
quences of multiple follow-up pedestrians crossing from left to

Table 3: Follow-up pedestrians (peds) crossing from left to
right. PCICF results show the similarity of the event.

Seq. ID Start-End
Frame

PCICF
Results Manual Annotation

003 598-690 E1: 70%
E3: 54% two peds

012 160-230 E1: 80%
E3: 63% two peds merge to one

021 139-200 E0: 54%
E1: 70% two peds

034 463-602 N/A far away, challenging

036 232-479 E0: 63%
E1: 50% two peds

037 434-637 E0: 54 % two peds merge to one

276 22-87 E0: 63%
E1: 70% two peds

292 281-400 E0: 72%
E1: 80% two peds merge to one

430 192-538 E0: 90%
E1: 80%

two peds merge to
one then split to two

right, and right to left, respectively. We invoke a series of criteria to
filter PCICF’s results for multi-pedestrian single-directional cross-
ing events: (a) only consider the similarity over 50%; (b) discard
other results if the similarity of one event is 100%; (c) pick the first
two events with the highest similarity percentages. Most of the
follow-up crossing sequences involve only two pedestrians, PCICF
returns the highest similarity with event 1 (‘_ X X; N/A; _ _ _’) and
event 5 (‘_ _ _; N/A; Y Y _’), which corresponds to their crossing
event ground truth. However, as discussed in Section 4.1, real-world
pedestrian crossing sequences can exhibit characteristics of multi-
ple events simultaneously, i.e., pedestrians split or merge during
the crossing from the ego vehicle’s visual view. For these sequences
with dynamic events (sequence 037 and 430 in Table 3, or 008 and
009 in Table 4), PCICF can indicate a relatively high similarity with
another event. For sequences containing more than two pedestrians,
PCICF classifies them into events that are more consistent with
real-world situations. In Table 4, sequence 045 has four pedestrians,
PCICF shows a dominating 81% similarity of event 7 (‘_ _ _; N/A;
Y Y Y’); the multiple pedestrians in sequence 128 are from far to
close in vehicle’s ego view, such change equals to the occupation of
RoI grids from one to two, thus, PCICF returns a 54% similarity of
event 4 (‘_ _ _; N/A; Y _ _’) and 50% of event 5 (‘_ _ _; N/A; Y Y _’).

Table 5 and Table 6 present the classification results for multi-
ple pedestrians who do not follow each other to cross in a single
direction. As mentioned in Section 3.1, our crossing event classi-
fication only includes up to three follow-up pedestrians from one
side, as it would occupy almost half of the ego vehicle’s front-facing
field-of-view. Thus, the sequence that has more than three pedes-
trians, for instance, sequence 217 in Table 5, shows a dominating
similarity of 72% to event 3 (‘X X X; N/A; _ _ _’). For the manual
annotation of multiple no-follow pedestrians crossing, a significant
drawback is that the gap between pedestrians is represented in a
subjective and relative tone. For instance, sequence 555 in Table
5, the human annotator describes the gap with the word ‘large’
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Table 4: Follow-up pedestrians (peds) crossing from right to
left. PCICF results show the similarity of the event.

Seq. ID Start-End
Frame

PCICF
Results Manual Annotation

008 571-697 E4: 81%
E5: 70% one ped splits to two

009 50-210 E4: 81%
E5: 70% one ped splits to two

011 621-731 E5: 100% two peds merge to one

045 343-410 E5: 50%
E7: 81% four peds

128 101-232 E4: 54%
E5: 50% four peds, far to close

280 280-419 N/A far away, challenging

282 1-166 E4: 72%
E5: 80% two peds merge to one

391 73-175 E5: 100% two peds
391 176-271 E5: 100% two peds

546 440-590 E4: 72%
E5: 70% two peds

Table 5: No-follow-up pedestrians (peds) crossing from left
to right. PCICF results show the similarity of the event.

Seq. ID Start-End
Frame

PCICF
Results Manual Annotation

012 710-790 E1: 90%
E3: 63%

three peds, two follow-up,
one with gap

048 1-274 E0: 54%
E1: 50%

two peds start with large gap,
merge to one at the end

161 655-871 E3:54% two peds with gap

217 1-150 E2: 58%
E3: 72% four peds

276 22-87 E0: 63%
E1: 70%

two peds start with large gap,
merge to one at the end

292 1-280 E0: 81%
E1: 50% three peds in different speeds

313 1-101 E1: 50%
E3: 63% three peds

419 230-584 E2: 82%
E3: 81% three peds clusters with gap

445 501-700 E2: 76%
E3: 81% two peds clusters with gap

555 1-144 E0: 45 %
E2: 47% two peds with large gap

relative to other similar sequences. In contrast, PCICF reports the
almost equal similarities (45% and 47%) of event 0 (‘_ _ X; N/A;
_ _ _’) and event 2 (‘X _ X; N/A; _ _ _’), which indicate the gap
is large enough that the sequence can be regarded as two single-
pedestrian crossing sequences. The major false detections occur in
sequences with abnormal crossing patterns, i.e., sequence 029 in
Table 6, where pedestrians cross half of the road with a large gap,
and sequence 543, where four pedestrians have irregularly large
gaps. PCICF returns the classification of both-directional crossing

Table 6: No-follow-up pedestrians (peds) crossing from right
to left. PCICF results show the similarity of the event.

Seq. ID Start-End
Frame

PCICF
Results Manual Annotation

024 49-247 E5: 70%
E7: 81%

two peds start with gap,
merge to one at the end

029 456-599 E40: 70%
E56: 80%

two peds with large gap,
half crossing

116 129-247 E5: 100% four peds in three clusters

161 497-654 E5: 90%
E7: 63% two peds with gap

292 656-807 E5: 60%
E6: 58%

three peds in two clusters
with gap

342 564-720 E5: 80%
E7:54% two peds with gap

350 520-795 E5: 90%
E7: 63% two peds with gap

531 33-181 E7: 72% two peds with gap

543 522-687 E93: 70%
E103: 78%

four peds in two clusters
with large gap

Table 7: Multiple pedestrians (peds) crossing both directions.
L and R indicate left and right, respectively. PCICF results
show the similarity of the event.

Seq. ID Start-End
Frame

PCICF
Results Manual Annotation

025 551-800 E11: 31% four peds L to R
one ped R to L

031 1-253 E72: 80% four peds L to R
one ped R to L

377 451-671 E88: 70% one ped L to R
two peds R to L

377 91-357 E73: 30% two peds L to R (gap)
three peds R to L (gap)

409 567-822 E74: 31% two peds L to R (gap)
one ped R to L

418 404-650 E23: 35% one ped L to R
three ped clusters R to L

537 1-240 E40: 23% one ped L to R (offset)
two peds R to L (large gap)

540 96-276 E92: 30% one pedestrian L to R
one pedestrian R to L (offset)

with high offset Φ. The reason for such false classifications is that
pedestrian tracking is incorrect due to occlusion and speed changes.

Table 7 shows PCICF’s classification results for complex multi-
ple pedestrians crossing in irregular patterns from both directions,
which is the most compelling real-world case. Please note that these
sequences usually occur at intersections or in urban areas with busy
traffic. We notice that factors such as background objects and occlu-
sion pose significant challenges for PCICF’s pedestrian detection
and tracking modules, which result in relatively low similarities
and misclassifications of offset Φ. Instead of setting multiple criteria
as the single-directional crossing scenarios, we report the event
classification with the highest similarity. For some sequences with
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simpler scenarios, PCICF returns a trustworthy classification. For
instance, sequence 025 and 540’s classification results are event 11
(’X X X; N/A; Y _ _’) and event 92 (’_ _ X; 5; Y Y _’), which generally
correspond to the ground truth from human annotators.

6 Discussion
Grounded on the aforementioned results, this section addresses the
research questions. The first research question focused on the de-
sign decisions to create a synthetic dataset for pedestrian crossing
classification. First and foremost, MoreSMIRK’s strength lies in be-
ing a synthetic dataset that has been systematically constructed and
can be systematically augmented. Since the focus is on pedestrian
crossing scenarios, any crossing direction and group configuration
is guaranteed to be covered, as opposed to previous attempts to
gather video data, such as PIE [22] or Waymo [19], which rely on
chance to capture as many pedestrian motion patterns as possible.

Answering RQ-1: The design of a synthetic dataset for event
classification should be based on a systematic exploration of the
event space, and should be scalable. The goal is to allow for the
augmentation with unique pedestrian crossing events, with spe-
cific crossing directions or group configurations.

It is important to note that while MoreSMIRK focuses on pedes-
trian motion, these principles apply to classifiers for any event type:
the systematic construction of the event dictionary allows synthetic
datasets to be extensible and adaptable to new configurations.

In turn, the second research question concerned the design deci-
sions required to develop a traffic event identification and classifica-
tion framework. To do that, the proposed framework must cover the
full process from sensory data (e.g., from dashboard cameras) to an
end-user-readable classification result. Given the many processing
steps needed in such pipelines:

Answering RQ-2: Traffic event identification and classification
frameworks should rely on a modular and scalable processing
pipeline with interchangeable and extendable components.

For instance, in the proposed PCICF, the YOLO component could
be replaced with another method or algorithm if a specific perfor-
mance level was required for the preliminary pedestrian detection.
Similarly, the specific SFC-based algorithm for dimensionality re-
duction could be replaced w another technique [3].

Finally, the third research question focuses on analyzing the per-
formance of the proposed framework. In that regard, the goal of the
proposed MoreSMIRK dataset was to mimic real-world pedestrian
crossing scenarios that are challenging in terms of motion direction
or group size and pattern. Each systematically constructed and
specific motion pattern was then encoded into the MoreSMIRK dic-
tionary and made available to PCICF. Based on the results presented
in section 5, we address the research question:

Answering RQ-3: PCICF identifies single-directional crossings
with high accuracy, especially single and two-follow-up pedestri-
ans cases. However, complex multiple pedestrian two-directional
crossing configurations pose challenges for PCICF.

As shown in section 5, the detections and classifications mostly
coincide with the manual annotations of the pedestrian crossings in

the case of single-directional pedestrian crossings. However, as seen
in Table 7, more complex pedestrian crossing events have a chance
for misclassification. Such events often involve heavy occlusions
and background objects, however, they are also challenging to other
state-of-the-art algorithms for object detection and tracking. While
such algorithms use rather end-to-end AI/ML components, PCICF’s
focus is on computational efficiency. A possible extension of the
PCICF pipeline could be to include a module for pedestrian crossing
intention detection [25]. This could serve as a prior for PCICF to
improve the accuracy of the classifications.

7 Conclusions and Future Work
In urban scenarios, ADAS and AD systems must safely interact with
pedestrians crossing the road in various configurations, i.e., groups
and speeds. Standards such as ISO 26262 and ISO 21448 guide the
development and assessment of these safety-critical systems, whose
robustness must be assessed systematically.

This work proposes a framework, called PCICF, to identify and
classify pedestrian crossings. PCICF incorporates several state-of-
the-art modules into its internal pipeline, including the well-known
YOLO, whose detections are fed into our algorithm to semanti-
cally filter potential pedestrian crossing matches. The pipeline also
leverages SFCs to reduce pedestrian crossing sequences into their
corresponding single-dimensional representations while preserv-
ing their spatiotemporal information; this allows the creation of
fingerprints that visually take the shape of barcodes [4], which
serve as keys in a dictionary of pedestrian crossing events called
MoreSMIRK. The MoreSMIRK dataset, which is systematically con-
structed and publicly available, is used in the last module of the
PCICF pipeline to obtain the final classification.

To evaluate the proposed PCICF, we rely on the large-scale, real-
world dataset PIE, which contains multiple pedestrian crossing
examples. In this dataset, PCICF achieves a maximum accuracy
of 85% in scenarios with dominating unique classifications, such
as uni-directional crossings of a single pedestrian. On the other
hand, for scenarios with ambiguous group patterns, PCICF does
not provide a unique match, but instead reports the likelihoods for
each crossing event type as defined in MoreSMIRK. Thanks to this,
PCICF can also identify sub-patterns (i.e., multiple single-pedestrian
crossings) within such ambiguous crossing configurations.

It is important to note that while the accuracy of PCICF, specially
in challenging scenarios, might not surpass other state-of-the-art
solutions, the computational efficiency of the individual algorithms
in PCICF, like SFC, make it usable onboard of AVs, which typically
have limited computational resource for OOD detection, for exam-
ple (i.e., checking whether a configuration is not covered in the
look-up dictionary). Moreover, given that the look-up dictionary
is constructed systematically, as described in subsection 3.1, more
configurations and motion patterns could be added to the look-up
dictionary to expand the OOD detector.

As previously discussed, complex two-directional multiple pedes-
trian scenarios, common in crowded intersections, still pose chal-
lenges for PCICF. Thus, refining the pedestrian crossing event dictio-
nary by systematically augmenting the range of pedestrian motion
patterns, and improving the pedestrian tracking will be the focus
of future work. For example, additional vulnerable road user types,
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such as e-scooter riders and people with disabilities, should be in-
cluded in future editions of MoreSMIRK and PCICF to increase the
inclusiveness of technology in our transportation systems. These
improvements are planned be added to the open-source PCICF on
GitHub, and to MoreSMIRK, hosted at AI Sweden, to foster further
important research around VRUs.
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